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Vicious Random Walkers in the Limit of a 
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The vicious random walker problem on a line is studied in the limit of a large 
number of walkers. The multidimensional integral representing the probability 
that the p walkers will survive a time t (denoted PIp)) is shown to be analogous 
to the partition function of a particular one-component Coulomb gas. By 
assuming the existence of the thermodynamic limit for the Coulomb gas, one 
can deduce asymptotic formulas for PI p) in the large-p, large-t limit. A 
straightforward analysis gives rigorous asymptotic formulas for the probability 
that after a time t the walkers are in their initial configuration (this event is 
termed a reunion). Consequently, asymptotic formulas for the conditional 
probability of a reunion, given that all walkers survive, are derived. Also, an 
asymptotic formula for the conditional probability density that any walker will 
arrive at a particular point in time t, given that all p walkers survive, is 
calculated in the limit t >> p. 
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1. I N T R O D U C T I O N  A N D  S U M M A R Y  

To commemora te  the award of the Bo l t zmann  medal  at S T A T P H Y S  15 in 
Edinburgh,  Scotland, M . E .  Fisher presented a paper  entitled, "Walks, 

walls, wetting and  melt ing" in a one-hour  address - - the  first lecture of the 
meeting. ~1) Al though not  present at that  occasion, I was in a t tendance  

when the paper  was presented as a series of lectures by Fisher at the 
Austra l ian Na t iona l  Univers i ty  dur ing  Janua ry  of the next year (1984). It  

was dur ing the first of these lectures that  the colorfully presented topic of 
vicious r a n d o m  walkers was introduced,  and  the probabil is t ic  theory 
treated in some detail. 
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Let us first recall the formulation of the vicious random walker 
problem on a lattice, according to the lock step model. (1) Consider p 
random walkers, each an even number of lattice spacings apart, on a 
one-dimensional lattice. At regular time intervals, each walker must take 
either a step one lattice site to the left or a step one lattice site to the right, 
with equal probability 1/2. The walkers are termed vicious, since if any two 
should arrive at the same site, exchange of gunfire results in the deaths of 
both walkers. 

A basic problem, which arose in the context of the domain wall theory 
of two-dimensional phase transitions, (2) is to calculate the probability den- 
sity that all p walkers will survive a large number of steps n and arrive at 
a particular set of lattice points. This problem was solved by Huse and 
Fisher. (2) Instead of considering the above lock step model, they studied 
the corresponding Brownian motion model, which can be thought of as the 
limit in which the lattice spacings and time increments are taken to zero. 

It is the Brownian motion model of vicious random walkers which we 
will study here. We suppose that initially there are p vicious walkers 
equally spaced a distance a from each other and distributed at and to the 
right of the origin. Remarkably, the probability densi ty QI p) that all 
walkers survive a time t and arrive at the points 

xl <x2< "" <Xp (1.1) 

can be calculated exactly for any p.(2) One finds [Ref. 1, Eq. (4.7) with n 
replaced by Dt and ~r = 0] 

exp[  -- E,~=I (xfl2/2Dt -- a2Sp/Dt ] 
Qlp)(xl,..., Xp) = (2re Dr) p/2 

I (axk'~_ (axf~] x 1-I exp \ Dt J exp (1.2) 
l<~j<k<~p \ D t J J  

where 

1 Sp=-:-zp(p- 1) (2p-  1) (1.3) 
I Z  

and D is the diffusion constant, defined so that the mean square displace- 
ment of a single walker is Dt. Our primary concern will be with the 
problem, left open by Fisher, (1) of calculating the asymptotic behavior of 
probabilistic quantities from (1.2) in the limit when both p and t become 
large. 

We will begin our study in Section 2 by providing a derivation of (1.2) 
from the p-dimensional heat equation. Next, the integral representing the 
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probability that all p walkers survive a time t (denoted P~P)) is transformed 
to display an analogy with the partition function of a particular Coulomb 
gas. This is essential in determining the large-p, large-t behavior of PI p), 
since it is possible to conjecture the functional form of the leading-order 
behavior of the partition function of the Coulomb gas from physical 
considerations, which is a vital step in our method of calculation. 

In Section 3, the results obtained from the Coulomb gas analogy are 
used to specify the asymptotic behavior of Pl p) [see (3.9)-(3.11)]. Further, 
asymptotic formulas for the probability of a reunion RI p) (the probability 
that the final configuration of walkers is equispaced with spacing a) are 
specified by (3.17)-(3.19). Combining the results for PI v) and RIp), the 
asymptotic behavior of the conditional probability of a reunion, given that 
all walkers survive, is given by (3.21)-(3.24). 

In the final section, the asymptotic behavior of the conditional 
probability density that a walker will arrive at the point x, given that all 
walkers survive, is calculated exactly for t > p. The analysis here relies on 
a result from the theory of random matrices33) 

2. THE C O U L O M B  GAS A N A L O G U E  

2.1. Solut ion of the p-Dimensional  Heat  Equation 

It was observed by Huse and Fisher (2) that p vicious random walkers 
on a line can be considered as a single walker in p dimensions, walking in 
the simplex region (1.1). It follows immediately (although it is not stated 
explicitly in either ref. 1 or ref. 2) that the probability of survival QI p) must 
satisfy the p-dimensional heat equation 

L ~ 02 Q~ p)-2 8--O(p)-DOt~-., (2.t) 
j = l  

The boundary condition to be satisfied is 

QIp)=o whenever x j = x / ,  L j ' = I ,  2 ..... p ( j ~ j )  (2.2) 

while the initial condition is 

where 

p 

Q~P) ,~o l~ OIP)(J, xj) 
j - - I  

l"~(j, x j)  = \ 2=  DtJ  e -  Exj- ~j- x)o~2ji~t 

(2.3) 

(2.4) 
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The conditions (2.3) and (2.4) say that for small times the vicious 
random walkers behave as unrestricted Brownian particles, initially equally 
spaced (spacing a) and distributed at and to the right of the origin. As a 
final restriction, we require that other than at the points (2.2), QI p) must 

be strictly positive. 
Since the solution of (2.1) subject to the conditions in the above 

paragraph is unique, finding the solution derives the formula for QI p). In 
fact, the solution follows immediately from antisymmetrizing the free 
solution (2.3) (this procedure is of course standard in the theory of non- 
interacting fermions in an external field). Thus, 

QI p)= det [-~blP)(k, xj)]j,k = 1, 2,..., p (2.5) 

as all of (2.1)-(2.3) are satisfied [(2.3) follows since we have the restriction 
(1.1)]. The positivity condition follows immediately from the formula (1.2), 
which in turn follows from straightforward manipulation of the determi- 
nant in (2.6) and the van der Monde expansion 

det[y~ 1]j,k: 1,...,p = H (Yk-Yj) 
l~ j<k<~p  

(2.6) 

2.2. Probabi l i ty  of  Survival  and a Coulomb Gas Analogue 

Let us now consider the problem of calculating the probability that all 
p walkers survive, which is obtained from (1.2) by integrating over the 
simplex region (1.1). From the symmetry of the integrand, the region of 
integration can be taken as all of R p provided we take the absolute value 
of the product in (1.2) and divide by p!. 

Denoting this probability by PIp), after straightforward manipulation 
we therefore have 

e - a2p(p2 1 )/24Dt 

P I  p) - -  (27VCp, t)P/2 2 p (p -  1)/2I(1 ) (2.7) 

where 

a(xk-xj)  ~ (2.8) 
• 1-[ sinh 2(Dt ~p,t) m 

l ~ j < k ~ p  

The auxiliary parameter 7 and the function ~p,t i-whose form will be chosen 
for analytical convenience in (2.22) and (2.24)] have been introduced, 
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because then (2.8) can be interpreted as the partition function of a 
Coulomb gas system. 

To see this, we know (4'5) that 

~b(x, y) = - l o g  ]sinh{rc(x + iy)/L}l (2.9) 

satisfies the two-dimensional Poisson equation 

V2~(x, y ) =  -2~6(x) 6(y) (2.1o) 

subject to the semiperiodic boundary condition ~b(x, y) = ~b(x, y + L). Thus, 
for a system of p positive two-dimensional charges each of magnitude q, in 
periodic boundary conditions in the y direction with L =  27c(Dt "~p,t)l/Z/a, 
and confined to a line in the x direction, the Boltzmann factor is 

a ( x k -  x j) ' 
l-I sinh 2~-D-~ .c-~. t ~  2 (2.11) 

l<~ j<k~p  

where xk denotes the coordinate of the kth particle, and 

= q2/k B T (2.12) 

(see upper part of Fig. 1). 
Our ability to determine the large-p behavior of (2.7) is dependent on 

(2.8) representing the partition function of a stable Coulomb gas (up to 
multiplicative constant terms). We expect a one-component log-potential 
Coulomb gas to be stable whenever the system (i)is globally charge 
neutral, (ii)has a finite, nonzero particle density in the thermodynamic 
limit, and (iii)the potential tends to 

- l o g  r (2.13) 

where r is the particle separation, in the thermodynamic limit. 
For condition (i), we introduce a neutralizing charge density -qa(x) 

with the property 

f~  a(x)dx=p (2.14) 

This background will couple to the particles to give a further term to the 
Boltzmann factor. To obtain the prefactor 

j = l  
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of (2.11) in the integrand in (2.8), we require 

sinh a( x - s ) x 2 
f ~ a(s) log 2(Dtzp, t)l/2 =2-~p, + c  (2.16) 

For Ix[ large 

a ( x - s )  a 
sinh 2( D t "  ~p,t! ]I/2 2(Dt.Cp, t)l/2 [x--sl  (2.17) 

which implies that in this limit the lhs of (2.16) is of order Ix[. Thus, (2.16) 
cannot be valid for large Ixl. This means that the domain of the Coulomb 
gas must be a finite interval. 

The dependence of Vp, t on p and t is obtained from condition (ii) 
above. First note that since one-component Coulomb systems are conduc- 
tors, the particle density will exactly equal the background density, 
provided the latter is slowly varying with respect to the mean spacing 
between charges. (Were this not the case, there would be a macroscopic 
electric field within the conductor, so it would not be in equilibrium.) Thus, 
perhaps the simplest way to ensure condition (ii) is to require that G(s) 
tends to a positive constant q as p becomes large, for then the above 
argument implies that the particle density also has the constant value ~/. 

Considering (2.14) and the second sentence after (2.17), for p large we 
thus have 

t/, Ixl <~p/2tl (2.18) 
~r(x) ~ 0, ]Xl > p/2rl 

Substituting (2.18) in (2.16) gives that to leading order, for p large and x 
fixed, 

f p/2rl sinh a ( x -  s) x 2 log ds + c' (2.19) 
" ~-p/2. 2(Dt ~p,,)1/2 = ~ p , ,  

By breaking the range of integration into two intervals Ix, p/2rl] and 
[ -p /2 t l ,  x],  it is straightforward to show that the x-dependent portion of 
the lhs of (2.19) behaves as 

ax2 (1 + 2 e x p [ - a p / 2 q ( D t  Zp, t) 1/2] x] 
(2.20) 

2(Dt Zp, t) ~/2 \ 1 - exp[ -ap/2r l(Dt  Zp,,)l/2]] 

in the desired limit. 
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For p/(Dt Zp, t) 1/2 ~ O, the final factor in (2.20) 
4rl(Dt "~p,t)l/2/ap and thus (2.20) behaves as 

behaves as 

2x2~l/p (2.21) 

Comparing (2.21) to the x-dependent term on the rhs shows that we 
require 

zp,~ = p/4q 2, p <~ Dt (2.22) 

On the other hand, for p/(Dt ~p,~)~/2~ ~ ,  the final factor in (2.20) 
tends to one and thus the x-dependent portion of the lhs of (2.19) 
behaves as 

which implies the choice 

"Ep, t 

a x  2 

2(Dr Zp, t) m 
(2.23) 

= Dt/(a~l) 2, p > Dt (2.24) 

Together with (2.22), (2.24) defines rp,, for large p and t, so that the 
condition (ii) above is satisfied. It may seen a little disturbing at this stage 
that the arbitrary positive constant r/ appears in both (2.22) and (2.24). 
However, it will transpire that the only way rp,, enters our asymptotic 
formulas is as the argument of a logarithm, so that ~/ is irrelevant to the 
leading behavior. 

The third and final criteria for stability holds if we take the pair poten- 
tial to be 

- l o g {  sinh a(xk-x f l  2(Dt~p,t) m} 
2(Dt "~p,t) 1/2 (2.25) 

This is the original potential, plus a term independent of the particle coor- 
dinate, and so will give the Boltzmann factor (2.11) now multiplied by a 
constant. 

Hence the integrand in (2.8) is identical to the Boltzmann factor of a 
stable Coulomb gas if we multiply the former by 

e r f ( p ' ' )  (2.26) 

(the Boltzmann factor of the constant terms, that is, those terms inde- 
pendent of the particle coordinates, in the Coulomb gas Hamiltonian). 
However, the partition function of the Coulomb gas should be an integral 
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o o o o ima.qe 

real 0 0 0 0 
system 

o o o o image 

I 
-Ap Ap 

Fig. 1. The Coulomb gas analogue for the probability of survival of p vicious random 
walkers for a time t. The Coulomb gas consists of p like charges on a line interacting via the 
logarithmic potential at the reduced temperature q2/k B T= 1. There are periodic boundary 
conditions in the y direction with period L = 27r(Dt "Cp, t)l/2/a, which  can be represented by 
periodic images of the real system repeated indefinitely. Further, there is a neutralizing back- 
ground in the range [ -Ap ,  Ap], Ap = prl/2, responsible for the harmonic attractions toward 
the origin and the stability of the Coulomb gas. 

over  the range x je  [ -p /2q ,  p/2q], j =  1,..., p. Extending  the range of  
in tegra t ion  to all of  R p, we ob ta in  (2.8) mul t ip l ied  by (2.26). Due  to the 
Gauss i ans  (2.15) in the in tegrand,  this a p p r o x i m a t i o n  will no t  change the 
value of  the free energy. The  C o u l o m b  gas ana logy  is summar ized  in Fig. 1. 

2.3. Conjectured Asymptot ic  Behavior of the Coulomb 
Gas Part i t ion Funct ion 

Above  we a rgued  tha t  for some unspecified f ( p ,  t) 

e~f(P't)I(7 ) (2.27) 

is equal  to the pa r t i t i on  funct ion of  a s table C o u l o m b  gas. Mathemat ica l ly ,  
s tabi l i ty  means  

lim {yf(p,  t)/p + ( l / p ) l o g  1(7)} (2.28) 

exists. Thus,  if 

f ( p ,  t)/p p u ~ f ~ ( p ,  t ) ~  -t-oo (2.29) 
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and the value of the limit (2.28) is 

g(t, 7) (2.30) 

then 

I(y) p ~o~ e -ypfl(p,t)+ pg(y,,) (2.31) 

The key feature for our purposes is that the 7 dependence of the 
leading behavior is linear in the exponent. If the leading behavior can be 
computed for any value of 7 > 0, it is therefore known for all 7 > 0. We 
will use this conjecture to compute the leading behavior of I(1), by first 
computing exactly I(2). 

But before doing this, let us exhibit the correctness of the analogue of 
(2.31) for the integral 

x I]  I x j - x k l  ~ (2.32) 
l<~j<k<~p 

It is straightforward to check that the three criteria of the above subsection 
are satisfied, so that (2.32) represents, up to a constant term, the partition 
function of a stable Coulomb gas. In this case we have the exact evaluation 
for all 7, (3,6) 

J(7) = p[ 7 p(p 1)7/4 FI (71/2)! (2.33) 
,=, (7/2)! 

For p large, Stirling's formula then gives 

,234, 

where h is a bounded function, in agreement with the structure of (2.31) 
and (2.29). 

2.4. Exact Evaluation of a Mul t id imensiona l  Integral 

Now we take up the task of evaluating (2.8) with 7=2.  For this 
purpose we require the Stieltjes-Wigert polynomials ~7) s,(x;  k), which have 
the orthonormality property 

f ~ W ( X )  Sm(X; k) = 6,,,, (2.35) Sn(X; k) dx 

where w(x)  = ~ - X/2ke-k2 log2x (2.36) 
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These polynomials are explicitly given by 

( -  1)" qn/2 + 1/4 ~'~n In] qV2(--ql/2X)V Sn(X; k ) -  
{(1 - q)-~ ~ q-~:::(-i--- q.)}1/2 ~to LvJ 

where 

(2.37) 

q = e 1/(2k2) (2.38) 

denotes the Gaussian polynomial. The only property of the 

p! (W'Cp, t) p/2 e -a2p3/4Dt dyt w(yt) 
l = 1  

x I-[ (Yk -- yj)2 (2.42) 
l<~j<k<~p 

where w(x) is given by (2.35) with 

k = (Dt)l/Z/a (2.43) 

The multidimensional integral in (2.42) can now be evaluated using the 
Stieltjes-Wigert polynomials (2.37) in accordance with the following 
general result. 

then gives 

and Iv ~] 
Gaussian polynomial we shall require is 

E;]=, 
To make use of these orthonormal polynomials, we first make some 

simple manipulations to the integrand in (2.8) to obtain the representation 

I(2) 2-P(P- 1) ( -  a2p3"~ oo oo 
p----(--, e x p \ ~ j  f_oodx , ' " f  oodxp 

x e x p { _  ~ [(x,)2+ ax/ ] ]  
j=, L re,, (Dt Zp.,),/2jj 

[ ax, ] 
x l~ Lexp (Dt ~p.t)m exp (Dt Tp t),/2j (2.40) 

l<~j<k<~p 

The change of variables 

xj= [(Dt rp.,)l/2/a] log yj, j =  1, 2 ..... p (2.41) 
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T h e o r e m  2.1. Le t {sn(x)},=o,1,... be a set of orthonormal polyno- 
mials with respect to a given weight function w(x) on the interval [a, b] 
(which may be semi-infinite or infinite). Suppose 

Then 

sn(x) = anx n + "" (2.44) 

p - - 1  - -2  

p! dx, w(x,) l-[ (2.45) 
/ = 1  l<~j<k<~p 

The proof of this result is straightforward. See, for example, ref. 3, 
Section 17.3. 

From (2.37)-(2.39) and (2.43), for the Stieltjes-Wigart polynomials 
relevant to the evaluation of (2.42), 

s , (x ;k)=q("+i /z )2{(1-q) (1-q2) . . . (1-q")} - l /Zxn+ ... (2.46) 

where 

q = e -"2/2D' (2.47) 

Hence, according to Theorem 2.1, we have the exact result 

p 1 

I(2)=2-P(P-1)(TZ~p,t) p/2ea2(p3-p)/12D` H (1--qk) p k (2.48) 
k = l  

3. A S Y M P T O T I C  F O R M U L A S  

3.1. The Probabi l i ty  of Survival  for  M a n y  Walkers  

From the conjectured behavior (2.31) we have that to leading order 

1(1) p ~-~ [-1(2)] 1/2 (3.1) 

The asymptotic behavior of I(2) is determined by the product in (2.48), 
which we shall denote by S(p, t). 

We are interested in the large-p and -t behavior of S(p, t), which 
depends on the behavior of the ratio pit. To obtain the expansions, it is 
useful to first take the logarithm of S(p, t). For pit--* O, use of the 
expansion 

l _ q k  ka2 ( _ka2~ 
~ t t  1 4DtJ (3.2) 
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gives 

1 2Dt p__l a2p3 
log S(p, t) ~ - -~ p(p - 1 ) log 7 + k ~= 1 log k! - --24D t (3.3) 

In the case pit ~ const, the summation obtained from taking the logarithm 
has the functional form 

p - - I  

f (k /p)  (3.4) 
k = l  

where f ( x )  is a well-behaved function. This is a Riemann sum and yields 
the leading behavior 

1 
log S(p, t) ..~ p2 fo (1 - s) log(1 - e -pazs/2Dt) (Is 

For p/t--, oo, the functional form is the Riemann sum 

(3.5) 

which, together with the result 

p - - 1  

g(k/t) (3.6) 
k = l  

gives 

f o  l o g ( 1 - e  ') dt= --1t2/6 

log S(p, t) ~ -~z2p Dt/3a 2 

(3.7) 

(3.8) 

Combining (2.48) and (3.3), (3.5), and (3.8), we thus have the 
asymptotic behavior of I(2) for large p, and consequently from (3.1) the 
behavior of I(1). Substituting the latter results in (2.7), we thus have that 
for large p, the probability that all walkers survive exhibits the behavior 

(2Dt~-p(p 1)/4 exp ( - P 1P~'Z'12., aZp3~ 
P I  p) p/t~o\~ a 2 J _ ~ l ~ 1 7 6  j (3.9) 

( ,.~ t P /2expFP2~l (1 - s ) log  l - e x p  2Dt ]ds  (3.10) pl p) 
p/t . . . . .  t L 2 Jo 

t-p/2 exp ( -  ~2p Dt] (3.11) p l  p) 
p/t ~ o, 3 a  2 \ / 
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From our argument suggesting (3.1), the multiplicative factors not 
specified in these formulas [h(t, p), say] each have the property that 

1 
lim - log h(t, p) (3.12) 

t , p ~ o o p  

is bounded. Terms with this property in (2.48) [which includes the 
arbitrary constant ~/ in the definition of vp,, (2.22) and (2.24)] therefore 
have not been included in the formulas (3.9)-(3.11). 

For p fixed, Fisher [ref. 1, Eqs. (4.9) and (4.10) with n replaced by Dt 
and b = 1 ] obtained the large-t expansion 

p~p) ~ p-p2/2(27t)-p/2 j(1)(Dt/a 2) p(p 1)/4 [1 + O(p3a2/Dt)] (3.13) 

where J(1) is given by (2.32). Using the exact evaluation of J(1), (2.33), 
and expanding for large p using Stirling's formula reclaims the leading 
behavior of (3.9) up to terms with the property stated in the sentence 
involving (3.12) above. 

3.2. The  P r o b a b i l i t y  of  a Reunion  

In the application of the vicious random walker problem to the 
domain wall theory of melting given by Huse and Fisher, (2/it is necessary 
to calculate the asymptotic behavior of the probability density of the final 
configuration being identical to the initial configuration (up to a transla- 
tion). Thus, in (1.2) we require 

xj - x~ = ( j -  k)a (3.14) 

The precise location of each walker is then specified by specifying the mean 
p 

E xfp (3.15) 
j = l  

Let us denote the probability density of a reunion of p walkers at time 
t for a particular :~ by rlP)(x). Then, as noted by Fisher, (1) from (1.2) we 
can immediately conclude 

e - p ( 2  - .~o)2/2Dt p 1 
E ( 1 - - e - - a ; k / D ' )  p k (3 .16)  rlP)(ff) = (27c Dt) p/2 k=l 

where xo is defined by (3.15) with x j=  ( j -  1)a. 
Recalling the definition of S(p, t) given between (3.1) and (3.2), we see 

that the product in (3.16) is exactly S(p, t/2). Thus, the asymptotic 
behavior is given by (3.3), (3.5), and (3.8). 
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Integrating rlP)(2) o v e r  all ~?, we therefore obtain that the probability 
of a reunion anywhere, to be denoted RIp), behaves for large p as 

(/1 R(P)t p/t~-~ o Apt -(p2- 11/2 exp log k! - 12Dt,/ (3.17) 

Rlp) p~ t--*~cconst p 1/2(2~z Dt)-(p-1)/2 

-pa2s) as] (3.18) x e x p [ p Z f / ( 1 - s ) l ~  1-exp Dt J 

RIP) p/ t~  oo P 1/2(27~ Dt)- (p --1)/2 exp (-- 7~2p~a 2Dt~'// (3.19) 

Ap = p-1/2(21rD)-(P- 1)/2 (D/a 2) p(p 17/2 (3.20) 
where 

Unlike (3.9)-(3.11), these results are completely rigorous, and further terms 
can be specified if desired. Equation (3.17) is consistent with Eqs: (4.16) 
and (4.17) of Fisher, (1) in which an asymptotic formula for R~ p) is given for 
large t and p fixed. 

3.3. The Condit ional  Probabil i ty of  a Reunion 

The conditional probability of a reunion, given that all walkers survive 
(SIp), say) is simply 

SI p) = -'tR(P)/P(P)~-- t 

and (3.17)-(3.19) we have the large-p, large-t Hence from (3.9)-(3.11) 
expansions 

S(P)t p/t~ 0 Cp t-(p-1)(p+2)/4exp l~ 2,11~ (3.21) 

1 F 1 - e  ]d t SlP) p/t ,~const e x p  {P2 fo (1-s)logL(l_e_pa2,/2Ot)l/2j (3.22) 
J 

where 
Cp = ( D/2a 2) _p2/4 (3.23) 

For large p and p/ t~  oo, from (3.11) and (3.19), the t e r m s  RIP) and 
PI p) are identical. From the comment below (3.11), this means 

SI p) ~ O(e ph(p,t)) (3.24) pit ~ 
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where 
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h(p, t)p/,Z ~ 0(1) (3.25) 

The exponent ( p - 1 ) ( p  + 2)/4 in (3.21) is that obtained by Fisher [ref. 1, 
Eq. (4.5)1 for the asymptotic expansion of SI p} for t large and p fixed. 

4. D E N S I T Y  PROFILE  FOR S U R V I V I N G  W A L K E R S  

The final problem to be addressed is to calculate the asymptotic 
behavior of the conditional probability density [pSP)(x), say] that any 
walker will arrive at a particular point in time t, given that all walkers 
survive. From (1.2), this is given by 

5 f i  f dx,[l+A(x,)][QlP'(x~ ..... Xp)IIA=o/PI p) (4.1) PlP)(x)- 6A(x) l = 1  R 

where 6/5A denotes functional integration and R denotes the region (1.!). 
Since the integrand is symmetric in each variable, the simplex region (1.1) 
can be replaced by all of R p provided we divide by p!. Carrying out the 
functional integration then gives 

1 f l  f ~  dx, IQlP)(x, x2,...,xp)l/Pl p' (4.2) P IP)(x) =- (p -- 1 )-----~./=2 - -  o o  

which has the normalization 

f ~  plP)(x)dx=p (4.3) 
- -oo 

We will restrict our attention to the case t >> p. The exponentials in the 
product in (1.2) can then be expanded to first order and we obtain, after 
the change of variable Xg = ( x k -  ap/2)/(Dt) 1/2, 

PlP)(x) ~ p H p 2 ~ _ ~ d X  e (x,)2/2n IXk-Xjl l l l l < ~ j < k < ~ p  (4.4) 
�9 (Dt) '/2 I-[f=1 ~-o~ dXte -{x')2/2 YI,<~j<k<~p IXk--Xy[ 

where in the numerator 

X1 = (x - ap/2 )/(Dt ) ~/2 

The integrals in (4.3) have occurred before in the statistical theory of 

822/56/'5-6-15 
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energy levels (i.e., theory of r a n d o m  matrices),  (3) and for p even have been 
exactly evaluated to give 

1 [ i ~  ( x _ a p / 2 ,  ] /p\I /a  (x-ap/2"~ 
~ I P ) ( x ) ~  ~ t (Dt) 112 )Af-tTJ +P-it (Dt) 112 ) 

X ~ x/(ot)t/2 ] 
dy r (4.5) 

"0  

where 
~bj(u) = (27!  =a/2) ,/2 e ,2/2 Hi(u) (4.6) 

Hi(u) denot ing the Hermi te  polynomia l  of order  j. Fo r  p large (but still 
t > p),  this tends to the "semicircle law ''{3) 

plPl(x,~,~(O2p/Dt!:;2 [la-~X--ap/2)2/(2pDt']I/2' , ( x i a p / 2 ) i < ( 2 p O t )  1/2 

t , It - ~/  ) l>(2pDt)  m (4.7) 

Note  that  (4.7) is symmetr ical  abou t  the point  x = ap/2, the midpoin t  of the 
initial configurat ion of the walkers. 

The  result (4.7) is nothing but  the background  density implied by the 
C o u l o m b  gas in terpreta t ion of the integrand in (4,3), and thus could have 
been derived as the solution of the integral equat ion  

x - ap/2 (x - ap/2) 2 
r |p/2. PlP)(Y)log y -~ t - -~  dy = 2Dt + const (4.8) o p/2q 

[recall the discussion between (2.13) and (2.16)]. 
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